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ABSTRACT

We show that the invariant probability measure of the ergodic piecewise-
smooth circle homeomorphisms with several break points which satisfy
Zygmund condition and the product of jumps at break points non-trivial
is singular with respect to Lebesgue measure.
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1. Introduction

Let S1 = R/Z be the unit circle with clearly defined orientation, metric,
Lebesgue measure and the operation of addition. Let π : R → S1 denote the
corresponding projection mapping that "winds" a straight line on the circle.
An arbitrary homeomorphism f that preserves the orientation of the unit circle
S1 can be "lifted" on the straight line R in the form of the homeomorphism
F : R → R with property F (x + 1) = F (x) + 1 that is connected with f
by relation π ◦ F = f ◦ π. This homeomorphism F is called the lift of the
homeomorphism f and is defined up to an integer term. The most important
arithmetic characteristic of the homeomorphism f of the unit circle S1 is the
rotation number

ρ(f) = lim
n→∞

Fn(x)

n
mod 1

where F is the lift of f with S1 to R. Here and below, for a given map F, Fn
denotes its n-th iterate. The rotation number is rational if and only if f has
periodic points. Poincare proved that, if f does not have any periodic orbit
then it is semi-conjugate to the linear rotation fρ : x → x + ρ mod 1. Den-
joy (1932) proved that,if f is a circle diffeomorphism with irrational rotation
number ρ = ρ(f) and logDf is of bounded variation, then f is topologically
conjugate to the pure rotation fρ : x → x + ρ mod 1, that is, there exists an
essentially unique homeomorphism ϕ of the circle with ϕ ◦ f = fρ ◦ ϕ. It is
well known that every circle homeomorphism with irrational rotation number
ρ has a unique f−invariant probability measure µf . Furthermore, the conjuga-
tion ϕ and the invariant probability measure µf are connected by the relation
ϕ(x) = µf ([0, x]), x ∈ S1 (see, for example, Cornfeld et al. (1982)). Because of
this relation, µf is absolutely continuous with respect to the Lebesgue measure
l if and only if ϕ is given by an absolutely continuous function. The invari-
ant probability measures of circle homeomorphisms with one break point was
studied for the first time by Dzhalilov and Khanin (1998). Later Dzhalilov
et al. (2012) extended this result for the case of circle homeomorphisms with
several break points. In all above cases the invariant probability measures of
circle homeomorphisms with break points are singular with respect to Lebesgue
measure. The result of Dzhalilov et al. (2012) on circle homeomorphisms with
n break points is the following theorem.

Theorem 1.1. Dzhalilov et al. (2012). Let f : S1 → S1 be an orientation pre-
serving circle homeomorphism with irrational rotation number ρ, and satisfies
the following conditions:

(a) There exist points b(1), b(2), ..., b(n) ∈ S1 at which the derivatives f ′(b(i) 1
20) >

0 are defined and f ′(b(i)− 0)/f ′(b(i) + 0) = σi(b(i), f) 6= 1, i = 1, ..., n;
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(b) f ′(x) is an absolutely continuous function on every connected component
of the set S1 \ {b(i), i = 1, ..., n};

(c) f ′′(x) ∈ L1(S1, dl);

(d)
n∏
i=1

σi(b(i), f) 6= 1.

Then the invariant probability measure µf is singular with respect to Lebesgue
measure l on the circle S1.

Where the points b(1), b(2), ..., b(n) are called break points and the numbers
σi(b(i), f) are jumps at break points of f .

Before formulate our main result we introduce the following class of home-
omorphisms. Let ψ : S1 → S1 be a continuous, non decreasing function with
ψ(0) = 0. Using this function we define a class of orientation preserving circle
homeomorphisms f such that

|f(x+ t) + f(x− t)− 2f(x)| ≤ Ctψ(t) (1)

for all x, t ∈ S1 such that x − t, x + t ∈ S1, here C > 0 is a constant. The
class of real functions satisfying (1) with ψ ≡ 1 on real line is called Zygmund
class and denoted by Λ∗ (see Zygmund (2002)). This class plays a key role
to investigate the trigonometric series. The class Λ∗ was applied to the circle
homeomorphisms for the first time by Hu and Sullivan (1997). They extended
the classical Denjoy’s theorem to this class. The functions satisfying (1) are
not of bounded variation at all, the reverse also is not true. For example let us
consider Weieratrass function:

Wβ(x) =

∞∑
n=1

θnb
−nβ cos(bnx)

where b > 1 and lim
n→∞

θn = 0. The following fact can be found in Zygmund
(2002). Weieratrass proved that for a small enough β > 0 the function Wβ

is nowhere differentiable. The extension to β ≤ 1 was fist proved by Hardy.
For β > 1 the function W ′β exists and continuous. If the sum of squares of
the sequence θn is divergence then W1 is differentiable in a set of measure
zero. Thus making b even number and instead of θn taking the sequence n−1/2
easily we may check that the function W1 satisfies the condition (1) but almost
nowhere differentiable.

The main result of this paper is the following theorem.
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Theorem 1.2. Let f be a C1 circle diffeomorphism with irrational rotation
number ρ, and satisfies the following conditions:

(1) There exist points b(1), b(2), ..., b(n) ∈ S1 at which the derivatives f ′(b(i) 1
20) >

0 are defined and f ′(b(i)− 0)/f ′(b(i) + 0) = σi(b(i), f) 6= 1, i = 1, ..., n;

(2) f ′(x) ∈ CZ(S1 \ {b(i), i = 1, ..., n}), f ′(x) > 0 for all x ∈ S1 \ {b(i), i =
1, ..., n};

(3)
n∏
i=1

σi(b(i), f) 6= 1.

Then the invariant probability measure µf is singular with respect to Lebesgue
measure l on the circle S1.

2. Necessary facts and definitions

An ordering on the circle S1 is determined by an orientation of it. Let
a, b, c be points on S1. We write a ≺ b ≺ c to signify that when moving
from a in the positive direction, we first reach b, and then c. We consider a
circle homeomorphism f that preserves orientation and has irrational rotation
number ρ. Let {ak, k ∈ N} denote the sequence of elements in the expansion
of ρ into a continued fraction, that is, ρ = [a1, a2, ..., an, ...]. We set pn/qn =
[a1, a2, ..., an], n ≥ 1. The numbers pn/qn are called the convergents of ρ, and
qn is the first return time. The numbers qn satisfy the difference equation
qn+1 = an+1qn + qn−1, n ≥ 1, with the initial conditions q0 = 1 and q1 = a1.

For an arbitrary point x0 ∈ S1, let 4(n)
0 (x0) denote the closed interval with

endpoints x0 and xqn = fqn(x0). Note that for odd n the point xqn lies to the
left of x0, and for even n to the right. We set 4(n)

i = f i(4(n)
0 ), i ≥ 1.

Lemma 2.1. Sinai (1995) Consider an arbitrary point x0 ∈ S1. The segment
{xi, 0 ≤ i < qn + qn−1} of the trajectory of this point divides the circle into the
following disjoint (except for the endpoints ) intervals: 4(n)

i , 0 ≤ i ≤ qn−1−1,

4(n−1)
i , 0 ≤ i ≤ qn − 1.

We denote the resulting partition by ξn(x0) and call it a dynamical partition
of order n. We now describe the process of transition from ξn(x0) to ξn+1(x0).
All the intervals 4(n)

j , 0 ≤ j ≤ qn−1−1 are preserved, and each of the intervals
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4(n−1)
i , 0 ≤ i ≤ qn − 1 is divided into an+1 + 1 parts:

4(n−1)
i (x0) = 4(n+1)

i (x0) ∪
an+1−1⋃
s=0

4(n)
i+qn−1+sqn

(x0).

Lemma 2.2. Consider a circle homeomorphism f with lift F and irrational ro-
tation number. Suppose that at points b(i) ∈ S1, i = 1, ..., n, b(1) ≺ b(2) ≺ ... ≺
b(n) there exist finite one-sided derivatives F ′(b(i) 1

20) > 0, F ∈ C1([b(i), b(i+
1)]), i = 1, ..., k, b(n+ 1) = b(1) and

∑n
i=1var[b(i),b(i+1)] lnF ′ = v <∞. Let

v = v +

n∑
i=1

| lnF ′(b(i− 0))− lnF ′(b(i+ 0))|.

Then the inequalities

e−v ≤
qn−1∏
s=0

F ′(ys) ≤ ev

hold for any y0 such that fs(y0) ∈ S1 \ {b(i), i = 1, 2, ..., n}, 0 ≤ s < qn.

These inequalities are called Denjoys inequalities. Lemma 2.2 is proved in
the same fashion as the analogous assertion for diffeomorphisms (see Khanin
and Sinai (1989)). It follows from Lemma 2.2 that the intervals comprising
the dynamical partition ξn(x0) have exponentially small lengths. We set λ =
(1 + e−v)−1/2 < 1.

Corollary 2.1. Let 4(n) be an arbitrary element of the dynamical partition
ξn(x0). Then

l(4(n)) ≤ C0λ
n,

where the constant C0 is independent of n and x0.

Denjoys Theorem Khanin and Sinai (1989). Suppose that the hypotheses
of Lemma 2.2 hold. Then the homeomorphism f is topologically conjugate to
the linear rotation fρ.

Definition 2.1. Let K > 1 be a constant. Two intervals I1 and I2 are said to
be K-commensurable on S1 if the inequalities K−1l(I2) ≤ l(I1) ≤ Kl(I2) hold.

In accordance with Khanin and Sinai (1989) we introduce the following
definition.
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Definition 2.2. An interval I = [τ, t] ⊂ S1 is said to be qn-small, and its
endpoints qn-close, if the intervals f i(I), 0 ≤ i ≤ qn − 1, are pairwise disjoint
(except for endpoints).

It follows from the structure of dynamical partitions that an interval I =
[τ, t] is qn-small if and only if either τ < t ≤ fqn−1(τ) or fqn−1(t) ≤ τ < t.

Definition 2.3. The cross-ratio of four numbers (z1, z2, z3, z4), z1 < z2 <
z3 < z4, is the number

Cr(z1, z2, z3, z4) =
(z2 − z1)(z4 − z3)

(z3 − z1)(z4 − z2)
.

The notion of cross-ratios plays an important role in what follows.

Definition 2.4. Suppose that we are given four numbers (z1, z2, z3, z4), z1 <
z2 < z3 < z4 and a strictly increasing function F : R1 → R1. The distortion of
a cross-ratio is given by

Dist(z1, z2, z3, z4;F ) =
Cr(F (z1), F (z2), F (z3), F (z4))

Cr(z1, z2, z3, z4)
.

Let m ≥ 3, zi ∈ S1, i = 1, 2, ...,m and suppose that z1 ≺ z2 ≺ ... ≺
zm ≺ z1 (in the sense of ordering on the circle). We set ẑ1 = z1 and ẑi ={
zi, if z1 < zi < 1
1 + z1, if 0 < z1 < zi.

for i = 2, 3, ...,m. Obviously ẑ1 < ẑ2 < ... < ẑm.

The vector (ẑ1, ẑ2, ..., ẑm) is called the lifted vector of (z1, z2, ..., zm) ∈ (S1)m.
Let f be a circle homeomorphism with lift F . We define the cross-ratio of the
homeomorphism f of a four-tuple (z1, z2, z3, z4), zi ∈ S1, i = 1, ..., 4 z1 ≺ z2 ≺
z4 ≺ z1, with respect to f to be Dist(z1, z2, z3, z4; f) = Dist(ẑ1, ẑ2, ẑ3, ẑ4;F ),
where (ẑ1, ẑ2, ẑ3, ẑ4) is the lifted vector of the four-tuple (z1, z2, z3, z4).

3. Distortion lemmas and covering intervals
theorem

In this section, we estimate the distortion of cross-ratios of four points. Let
ω(δ; f) denotes a modulus of continuity of f in the closed interval I, that is
ω(δ; f) = {sup |f(x1) − f(x2)| for x1, x2 ∈ I, |x1 − x2| ≤ δ}. If f ′ satisfies (1)
then ω(δ; f ′) = o(δ log 1

δ ) (see Zygmund (2002)).
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Lemma 3.1. Suppose that a circle homeomorphism f satisfies the hypotheses
of Theorem 1.2. Suppose also that zi ∈ S1, i = 1, ..., 4 z1 ≺ z2 ≺ z3 ≺ z4 ≺ z1
and the interval [z1, z4] does not contain any break point of f . Then

|Dst(z1, z2, z3, z4; f)−1| ≤ C2|z4−z1|ψ(|z4−z1|)+|f ′(z4)−f ′(z1)|ω(|z4−z1|; f ′)
(2)

where the constant C2 depends on f .

Proof. We note that if f ′ satisfies (1) then for each x, y ∈ S1

f(x)− f(y)

x− y
=

1

x− y

y∫
x

f ′(t)dt =
f ′(x) + f ′(y)

2
+O(|z1 − z4|ψ(|z1 − z4|)).

This equality is proven in the same way that of Melo and Strien (1993). Using
this equality, we get

f(z2)− f(z1)

z2 − z1
z4 − z2

f(z4)− f(z2)
=
f ′(z2) + f ′(z1) +O(|z2 − z1|ψ(|z2 − z1|))
f ′(z4) + f ′(z2) +O(|z4 − z2|ψ(|z4 − z2|))

=

(3)(
1−f

′(z4)− f ′(z1)

f ′(z4) + f ′(z2)

)(
1+O(|z4−z1|ψ(|z4−z1|))

)
=
(

1−f
′(z4)− f ′(z1)

2f ′(z4)

1

1− f ′(z4)−f ′(z2)
2f ′(z4)

)
×

(
1+O(|z4−z1|ψ(|z4−z1|))

)
=
(

1− f
′(z4)− f ′(z1)

2f ′(z4)
(1+O(f ′(z4)−f ′(z2)))

)
×(

1 +O(|z4 − z1|ψ(|z4 − z1|))
)

= 1− f ′(z4)− f ′(z1)

2f ′(z4)
+O(|z4 − z1|ψ(|z4 − z1|).

In the same way can get that

z3 − z1
f(z3)− f(z1)

f(z4)− f(z3)

z4 − z3
= 1+

f ′(z4)− f ′(z1)

2f ′(z4)
+O(|z4−z1|ψ(|z4−z1|). (4)

From (3) and (4) we obtain

f(z2)− f(z1)

z2 − z1
z4 − z2

f(z4)− f(z2)

z3 − z1
f(z3)− f(z1)

f(z4)− f(z3)

z4 − z3
= 1−

(f ′(z4)− f ′(z1)

2f ′(z4)

)2
+O(|z4 − z1|ψ(|z4 − z1|).

Hence, from this equality and the modulus of continuity of f ′ follows that

|Dst(z1, z2, z3, z4; f)−1| ≤ const|z4−z1|ψ(|z4−z1|)+|f ′(z4)−f ′(z1)|ω(|z4−z1|; f ′).

The lemma is proved with const = C2.
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Now we consider the case when the interval [z1, z4] contains just one break
point bi0 . More precisely, suppose that bi0 lies outside the middle interval, that
is bi0 ∈ [z1, z2] ∪ [z3, z4]. Suppose for definiteness that bi0 ∈ [z1, z2]. We define
the numbers α, β, γ, τ , η and z as follows: α := z2−z1, β := z3−z2, γ := z4−z3,
τ := z2 − bi0 , η := β

α , ξ := τ
α .

Lemma 3.2. Suppose that a circle homeomorphism f satisfies the hypotheses
of Theorem 1.2. Let zi ∈ S1, i = 1, ..., 4 with z1 ≺ z2 ≺ z3 ≺ z4 ≺ z1. Suppose
also that bi0 ∈ [z1, z2] and the other break points of f are not contained in
[z1, z4]. Then∣∣∣Dst(z1, z2, z3, z4; f)− (σ(bi0) + (1− σ(bi0)ξ))(1 + η)

σ(bi0) + (1− σ(bi0))ξ + η

∣∣∣ (5)

≤ C3|z4 − z1|ψ(|z4 − z1|) + ω(|z4 − z1|; f ′)

where the constant C3 > 0 depends on f .

Proof. By assumption bi0 ∈ [z1, z2]. Rewriting Dst(z1, z2, z3, z4; f) in the form

Dst(z1, z2, z3, z4; f) =
Cr(f(z1), f(z2), f(z3), f(z4))

Cr(z1, z2, z3, z4)
=

(f(z2)− f(z1)

z2 − z1
· z3 − z1
f(z3)− f(z1)

)(f(z4)− f(z3)

z4 − z3
· z4 − z2
f(z4)− f(z2)

)
it is easy to check, that each multiplication in brackets equals to the following

f(z2)− f(z1)

z2 − z1
· z3 − z1
f(z3)− f(z1)

=
f ′+(bi0)(z2 − xb) + f ′−(bi0)(xb − z1)

z2 − z1
× (6)

z3 − z1
f ′+(bi0)(z3 − xb) + f ′−(bi0)(xb − z1)

=
(σ(bi0) + (1− σ(bi0))ξ)(1 + η)

σ(bi0) + (1− σ(bi0))ξ + η
,

where σ(bi0) =
f ′−(bi0 )

f ′+(bi0 )
the jump ratio of f at the point bi0 .

f(z4)− f(z3)

z4 − z3
· z4 − z2
f(z4)− f(z2)

=
(f ′(z4) + f ′(z3)

2
+O(|z4 − z3|ψ(|z4 − z3|))

)
:

(7)(f ′(z4) + f ′(z2)

2
+O(|z4−z2|ψ(|z4−z2|))

)
=
f ′(z4) + f ′(z3) +O(|z4 − z3|ψ(|z4 − z3|))
f ′(z4) + f ′(z2) +O(|z4 − z2|ψ(|z4 − z2|))

=
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1 +
f ′(z3)− f ′(z2)

f ′(z4) + f ′(z2)
+O(|z4 − z1|ψ(|z4 − z1|))

From (6) and (7) we have

f(z2)− f(z1)

z2 − z1
z3 − z1

f(z3)− f(z1)

f(z4)− f(z3)

z4 − z3
z4 − z2

f(z4)− f(z2)
=

(σ(bi0) + (1− σ(bi0))ξ)(1 + η)

σ(bi0) + (1− σ(bi0))ξ + η
+

f ′(z3)− f ′(z2)

f ′(z4) + f ′(z2)

(σ(bi0) + (1− σ(bi0))ξ)(1 + η)

σ(bi0) + (1− σ(bi0))ξ + η
+O(|z4 − z1|ψ(|z4 − z1|)).

Hence, from this equality and the modulus of continuity of f ′ follows that∣∣∣Dst(z1, z2, z3, z4; f)− (σ(bi0) + (1− σ(bi0)ξ))(1 + η)

σ(bi0) + (1− σ(bi0))ξ + η

∣∣∣
≤ const|z4 − z1|ψ(|z4 − z1|) + ω(|z4 − z1|; f ′).

The lemma is proved with const = C3.

4. Covering intervals theorem

Now we provide a theorem on covering intervals for circle homeomorphisms
with break points. Consider f ∈ S1 \ {b(1), b(2), ..., b(n)} with n break points
and irrational rotation number ρ. Suppose that all these break points lie in
different orbits. If this were not the case, then we could achieve it by considering
sufficiently high renormalizations. We set B(f) = {b(1), b(2), ..., b(n)}.

We introduce the notion of a ’regular’ cover of the break points in B(f).
Suppose that zi ∈ S1, i = 1, ..., 4, z1 ≺ z2 ≺ z3 ≺ z4 ≺ z1 and rn takes value in
the set {qn−1, qn, qn−1 + qn}. Suppose that the interval [z1, z4] is rn-small that
is, the intervals f j((z1, z4)), 0 ≤ j < rn are pairwise disjoint. Suppose that
the system of intervals {f j([z1, z4]), 0 ≤ j < rn} cover the elements of some
non-empty subset B̂ ⊂ B(f). We denote the number of elements of B̂ by m.
For every element b(is) ∈ B̂ there exists a number lis , 0 ≤ lis < rn such that
b̄(n)(is) = f−lis (b(is)) ∈ [z1, z4]. the point b̄(n)(is) is called the rn−pre−image
of the element b(is) in [z1, z4]. The set of rn pre-image of elements of B̂ also
consists of m elements: b̄(n)(i1), b̄(n)(i2), ..., b̄(n)(im); we denote the maximal
element of this set by b̂

(n)
t . Clearly, b̂(n)t = b̂(n)(it) for some 0 ≤ t ≤ m. We

introduce the following notations:

η(j) =
l([f j(z2), f j(z3)])

l([f j(z1), f j(z2)])
, z(is)(j) =

l([f j (̂b(n)(is)), f
j(z2)])

l([f j(z1), f j(z2)])
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1 ≤ s ≤ m, 0 ≤ j < rn.

In cases where b̂(n)(is) ∈ [z1, z2], the numbers zis(j) are called normalized
coordinates of the elements f j (̂b(n)(is)). When the point b̂(n)(is) moves from
z2 to z1, the normalized coordinate zis(j) varies from 0 to 1. It is easy to see
that

e−vη(0) ≤ η(j) ≤ evη(0), e−vzis(0) ≤ zis(j) ≤ evzis(0), i = 1, 2, ..., n

for all 1 ≤ j < rn.

Definition 4.1. Let K > M ≥ 1, ζ ∈ (0, 1), δ > 0 be constant num-
bers, let n be a positive integer and let x0 ∈ S1. We say a triple of intervals
([z1, z2], [z2, z3], [z3, z4]), zi ∈ S1, i = 1, ...4 (K,M, δ, ζ, x0)−regularly cover the
break points in a subset B̂ if for some rn ∈ {qn−1, qn, qn−1 + qn} the following
conditions hold:

1) [z1, z4] ⊂ (x0 − δ, x0 + δ) and the system of intervals {f j([z1, z4]), 0 ≤ j ≤
rn − 1} covers every point in B̂ only once.

2) z2 = b̂
(n)
t and b̄(n)(is) ∈ [z1, z2), 1 ≤ s ≤ n, s 6= t.

3) Ml([z2, z3]) ≤ l([z1, z2]) ≤ Kl([z2, z3]) and K−1l([z3, z4]) ≤ l([z2, z3]) ≤
Kl([z3, z4]).

4) The lengths of the intervals frn([z1, z2]), frn([z2, z3]) and frn([z3, z4]) are
pairwise K−commensurable.

5) max{l([frn(zi), x0]), l([zi, x0]), i = 1, ..., 4} ≤ Kl([z1, z2]).

6) max
1≤s≤m

{z(is)(0)} < ζ.

Definition 4.2. A subset B̂ ⊂ {b(1), b(2), ..., b(n)} is said to be non-trivial if∏
b∈B̂

σ(b, F ) 6= 1.

We now state a theorem on covering intervals which plays key role in the
proof of main result. The proof of this theorem does not depend on the con-
sidered class of circle homeomorphisms and similar to the proof of Dzhalilov
et al. (2012). That is why here we provide this theorem without proof.

Theorem 4.1. Suppose that a homeomorphism f satisfies the hypotheses of
Theorem 1.2. Let x0 ∈ S1 and let M ≥ 1, δ, ζ ∈ (0, 1) be constant numbers.
Then there exists a constant K = K(f,M, ζ) > M such that for any sufficiently
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large k there exists non-trivial subset B̂ = B̂(k) = {b(i1), b(i2), ..., b(im)}, points
zi ∈ S1, i = 1, ..., 4, z1 ≺ z2 ≺ z3 ≺ z4 ≺ z1 and rn = rn(z1, z2, z3, z4) ∈
{qn−1, qn, qn−1+qn} such that the intervals [zs, zs+1], s = 1, 2, 3 (K,M, δ, ζ, x0)−regularly
cover the break points of B̂.

5. Proof of main result

We state three lemmas and use them to prove the main result. These
lemmas can be proved in similar way that of Dzhalilov et al. (2012).

Lemma 5.1. Suppose that at a point x = x0 the lift Ψ of the conjugation ϕ
has positive derivative, Ψ′(x0) = ω0. Then there exist δ = δ(x0, ε) > 0 for any
ε > 0 and a constant C3 = C3(R1, ω0) for any R1 > 1 such that the inequality

|Dist(z1, z2, z3, z4; Ψ)− 1| < C3ε

holds for any points z1 < z2 < z3 < z4 lying in the neighborhood (x0−δ, x0 +δ)
and satisfying the conditions:

(i) the intervals [z1, z2], [z2, z3], [z3, z4] are pairwise R1−commensurable.

(ii) max{|z1 − x0|, |z4 − x0|} ≤ R1|z1 − z2|.

We define the following functions on the domain {(x, y) : x > 0, 0 ≤ y ≤ 1}
Fi(x, y) = [σi+(1−σi)y](1+x)

σi+(1−σi)y+x
, i = 1, 2, ..., n where the σi are the jumps of f at

the points b(i).

Lemma 5.2. Let {b(i1), b(i2), ..., b(im)} be an arbitrary non-trivial subset of

break points of f , so that
m∏
s=1

σis = A 6= 1. Then there exist constants Ω0 =

Ω0(σi1 , σi2 , ..., σim) > 1 and τ0 = τ0(σi1 , σi2 , ..., σim) ∈ (0, 1) such that the
inequality ∣∣∣ m∏

s=1

Fis(xs, ys)−A
∣∣∣ ≤ |A− 1|

4

holds for all xs ≥ Ω0, ys ∈ [0, τ0], s = 1, 2, ...,m.

We use τ0 and Ω0 to define two new constants τ0 and Ω0, which will play an
important role in the proof of Theorem 1.2. We set τ0 = min τ0(σi1 , σi2 , ..., σim) ∈
(0, 1), Ω0 = max Ω0(σi1 , σi2 , ..., σim) where the minimum and maximum are
taken over all non-trivial subsets {b(i1), b(i2), ..., b(im)} of break points of f .

Malaysian Journal of Mathematical Sciences 357



i
i

i
i

i
i

i
i

Akhadkulov, H., Mohd Salmi Md Noorani and Akhatkulov, S.

Proof of Theorem 1.2. Suppose that a homeomorphism f satisfies the hy-
potheses of the theorem. Since the rotation number ρ is irrational, the invariant
measure µ has no atoms and the conjugation ϕ(x) is given by monotonic func-
tion µ([0, x]), x ∈ S1. The finite derivative Ψ′(x) of the lift exists by the mono-
tonicity of the function Ψ for almost all x with respect to Lebesgue measure. We
claim that Ψ′(x) = 0 at all points x where the finite derivative exists. Suppose
that Ψ′(x0) = ω0 > 0 at some point x0 ∈ S1. We fix ε > 0. Let δ = δ(x0, ε) > 0
be defined by Lemma 5.1. We use the constants Ω0 and τ0 to define new con-
stants: M0 = Ω0e

v, ζ0 = τ0e
v where v > 0 is the total variation of lnF ′ over

S1. Let K0 = K0(f,M0, ζ0) > M0 > 1 be the constant defined in the assertion
of Theorem 3.1. By that assertion, for sufficiently large n there exist a non-
trivial subset B̂ = {b(i1), b(i2), ..., b(im)} of singular points of f , points zi ∈ S1,
i = 1, ..., 4 z1 ≺ z2 ≺ z3 ≺ z4 ≺ z1 and a number rn ∈ {qn−1, qn, qn−1+qn} such
that the triple of intervals ([z1, z2], [z2, z3], [z3, z4]) (K0,M0, δ, ζ0, x0)−regularly
cover the points in B̂.

Since after rn steps the images of the triple of intervals ([z1, z2], [z2, z3], [z3, z4])

cover all points of the non-trivial subset B̂, the cross-ratio Cr(z1, z2, z3, z4) and
Cr(frn(z1), frn(z2), frn(z3), frn(z4)) are substantially different. More pre-
cisely, the following lemma holds.

Lemma 5.3. The inequality

|Dist(z1, z2, z3, z4; frn)− 1| ≥ R2 (8)

holds for sufficiently large n, where the constant R2 > 0 depends only on f .

Since the intervals [zs, zs+1], s = 1, 2, 3 (K0,M0, δ, ζ0, x0)−regularly cover
the points in B̂ these intervals along with [frn(zs), f

rn(zs+1)], s = 1, 2, 3
satisfy conditions (i), (ii) of Lemma 4.1 with constant R1 = K0. Using the
assertion of Lemma 4.1 we obtain

|Dist(z1, z2, z3, z4;ϕ)− 1| ≤ C4ε (9)

|Dist(frn(z1), frn(z2), frn(z3), frn(z4);ϕ)− 1| ≤ C4ε (10)
where the constant C4 > 0 depends on R1 and ω.

Since ϕ effects a conjugation to a linear rotation, it is easy to see that

Cr(ϕ(frn(z1)), ϕ(frn(z2)), ϕ(frn(z3)), ϕ(frn(z4))) = Cr(ϕ(z1), ϕ(z2), ϕ(z3), ϕ(z4))
(11)
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Formulae (9)− (11) immediately imply that

|Dist(z1, z2, z3, z4; frn)− 1| ≤ C5ε (12)

where the constant C5 > 0 is independent of ε and n. The relations (12) and (8)
cannot hold simultaneously for sufficiently small ε. This contradiction proves
Theorem 1.2.
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